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Abstract 

This thesis presents a novel architecture of subthreshold voltage divider based strong phys-

ical unclonable function (PUF). The PUF derives its uniqueness from random mismatch 

in threshold voltage in an inverter with gate and drain shorted and biased in subthresh-

old region. The nonlinear current-voltage relationship in subthreshold region also makes 

the proposed PUF resistant to machine learning (ML) based attacks. Prediction accuracy 

of PUF response with logistic regression, support vector machine (SVM) and random for-

est (RF) is close to 51%. A prototype PUF fabricated in 65nm consumes only 0.3pJ/bit, 

and achieves the best combination of energy efficiency and resistance to ML attacks. The 

measured inter and intra hamming distance (HD) for the PUF are 0.5026 and 0.0466 re-

spectively. 
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Chapter 1 

Introduction 

1.1 Motivation 

According to the white paper release from Cisco on Cisco Visual Networking Index (VNI) 

forecast (February, 2019) [1], The global IP traffic is expected to rise nearly to triple from 

2017 to 2022. Also, Total Internet traffic has experienced dramatic growth in the past two 

decades, this gives rise to use of more connected devises. More than 20 years ago, in 1992, 

global Internet networks carried approximately 100 GB of traffic per day and ten years 

later, in 2002, global Internet traffic amounted to 100 Gigabytes per second (GB/second) 

and recently in 2017, global Internet traffic reached more than 45,000 GB/second. 

Figure 1.1: Cisco VNI Global IP Traffic Forecast, 2017-2022 [1] 
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Chapter 1 Motivation 

Globally, devices and connections are growing faster (10% Compound Annual 

Growth Rate (CAGR)) than both the population (which is the rate of 1.0% CAGR) and 

Internet users (at the rate of 7% CAGR) shown in Fig.1.1. This trend is accelerating the 

increase in the average number of devices and connections per household and per capita 

around the world. Each year, various new devices in different form factors with increased 

capabilities and intelligence are introduced and adopted in the market. This growth tread 

is proliferating and never ceasing to saturation. A growing number of Machine-to-Machine 

(M2M) applications, such as smart meters, video surveillance, healthcare monitoring, trans-

portation, and package or asset tracking, are contributing in a major way to the growth 

of devices and connections. According to the report By 2022, M2M connections will be 

51% of the total devices and connections [1]. M2M connections will be the fastest-growing 

category, growing nearly 2.4-fold during the forecast period, at 19% CAGR, to 14.6 billion 

connections by 2022. 

This develops the need to provide high speed data transfer to multiple devises 

without compromising on maximum security. As noted before, the increase of Machine-to-

Machine interactions posses a new challenge in cyber-security. It is critical to make sure 

all the transferred data is secure since most of them contain vital information. There is 

increasing concern over the mode of securing these devises because of it’s vulnerability to 

attacks. Traditionally the data from these secure devices are stored in Non-Volatile memory 

and they are processed through encryption algorithms. It is critical to note that there are 

many side channel attacks to extract this information since the data is physically stored. 

The next challenge would be to process all the data with the minimum power consumption. 

With the increases in M2M devices in future years, it is knowledgeable to enforce a method 

that delivers high efficiency. Thus, there is a need to develop a security device which can 

provide maximum security without the dependent on external memory source and also 

consume low power. If this system is made on-chip with minimum silicon footprint that 

consumes less power that would make this an ideal candidate. That introduces us to the 

family of PUFs. Si physical unclonable function (PUF) are lightweight hardware primitives 

that leverage random variations in CMOS integrated circuits to generate a unique key that 

can be used for authentication protocols or chip identification. They are proven to provide 
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Chapter 1 Motivation 

reliable security, consuming low power and occupying minimal Si foot print. Compared to 

standard cryptography algorithms like SHA or AES, Si PUFs provide on-chip security at 

a small fraction of power, thus making Si PUFs attractive candidate for secure internet-of-

things (IoT) applications. 

The first strong Si-PUF is an arbiter PUF [5] which uses variation in delay be-

tween two nominally identical paths to generate a 1-bit response. This gave rise to a novel 

hardware architecture which was soon gained popularity and was improvised into many 

architectures. Variants on arbiter PUF include using XOR-ing of arbiter PUF outputs [10] 

and using feed-forward paths [11] to inject non-linearity. The designed was made more non-

linear to make sure they are more unpredictable thus ensuring more security. The security 

of PUF was developed on the base their core properties: un-clonable and un-predictable. It 

was stated that the PUF’s function is very unique to its own and it is very difficult to derive 

a mathematical model [5]. PUFs increase physical security by producing volatile secrets 

that exist in a digital form only when the chip is powered on. In order to figure out the 

secret, the adversary has to mount an attack when the IC is running. An invasive attack 

must measure accurately the PUFs response without changing the properties or tampering 

the chip, which is very difficult, thus making it highly secure. The recent advancement in 

the of computer’s processing power mathematical calculations as become quite faster [5]. 

This developed to new approach towards modelling the PUF using the computational power 

and advanced algorithms. 

Even though the PUF was initially assumed to be highly secure and non-reproducible, 

In recent years [7, 12] have shown that most existing PUF models can be broken and PUF 

response predicted with high accuracy (90 � 99%) through the use of advanced machine 

learning (ML) models such as logistic regression or support-vector machine (SVM). Various 

modelling attacks were performed in early stages with minimal success but with the re-

cent advancement in machine learning algorithms, modelling attacks on PUF have become 

more viable. The introduction of ML attacks pose a serious threat to security provided 

by PUFs. Recently there are few works published in ML-resistant PUF: strong PUF uses 

subthreshold current array [8] which has a strong non-linearity arising out of MOSFET 

subthreshold operation leading to ML prediction accuracy of 60%. The SRAM array of [9] 
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consuming low power but exploiting the non-linearity developed form accessing the SRAM 

word line and read line, ML algorithms has ML prediction accuracy of only 89.4%. The 

work in [13] uses strong non-linearity of convergence time in a bi-stable ring arising out of 

variations in threshold voltages to limit prediction accuracy of ML attacks to 50%. The cur-

rent array PUF though gives a very high ML immunity consumes more power compared to 

SRAM PUF. Thus our work is framed in such a way to establish a very high ML modelling 

attack-immunity while consuming low power compared to the existing PUF architectures. 

In this work, we propose a subthreshold voltage-divider array based strong PUF 

which achieves simultaneous low energy consumption and high resistance to ML attacks. 

1.2 Thesis Organization 

The remaining part of thesis is organized as follows. An introduction about PUF includ-

ing various PUF’s architectures and its brief characterization is provided in chapter-2. In 

chapter-3 a detailed view on Strong PUF is provided, along with three more architectures 

and explaining its non-linearity. Chapter-4 introduces the modelling attacks made on PUF 

and gives a brief explanation about two important Machine learning algorithms that are 

used to model the PUFs. Chapter-5 explains two non-linearity PUF designs that are proven 

to be immune against machine learning modelling attacks. The proposed voltage divider 

array PUF is explained in chapter-6. The measurement results and analysis including 

comparison with other designs are established in chapter-7. Chapter-8 provides two more 

variants to the proposed architecture that brings about more non-linearity to the design 

and it’s analysis are discussed. Finally, Chapter-9 briefs the conclusion for the thesis. 

4 



Chapter 2 

Physically uncloanable functions 

2.1 Introduction 

The number of networked smart devices, programs, and information is constantly increasing 

which leads to an equally growing demand to ensure the security and reliability of these 

units. As they are pervasive in our daily lives, this issue has become a significant societal 

challenge since those data that are transmitted every second act as a digital copy of the 

individual [2]. One central task lies in realizing secure and reliable identification, authen-

tication, and integrity checking of these systems. Traditional security methods based on 

secret digital keys often do not provide adequate solutions for this purpose. One major 

point of vulnerability relates to their hardware implementations and key storage: A whole 

host of attacks for extracting, estimating, or cloning secret keys that are stored digitally 

in nonvolatile memory have been developed and reported over the past several years [2]. 

The situation is especially problematic for embedded and mobile low power devices with a 

small form factor, where the adversaries can often gain full and direct access to the device. 

For many FPGA-based re-configurable devices, which are increasingly growing in market 

share, the permanent storage of secret keys can be a problem: Integrating secure nonvolatile 

memory (NVM) on FPGAs incurs additional costs and fabrication overhead and, thus, it is 

often not included. Therefore, keys have to either be stored in external memory, where they 

are highly vulnerable, or an additional back-up battery to power on-chip volatile storage 

must be used, which increases cost and system complexity. [2] 
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Chapter 2 Introduction 

Over recent years, this approach has taken interest, which is based on the inherent, 

hard-to-forge and unique disorder of physical objects. It constitutes a promising alternative 

which can address the standing challenges of classical security that were described earlier. 

Two major classes of disorder-based security systems that have been proposed are Unique 

Objects (UNOs) and Physical Unclonable Functions (PUFs). A Unique Object is a physical 

system that, upon measurement by an external apparatus, exhibits a small, fixed set of 

inimitable analog properties that are not similar to any other objects. It shall be impossible 

to intentionally fabricate a second object with the same properties, even if the properties 

and exact structure of the original object are known. Such properties can be referred to as 

the fingerprint of a unique object for obvious reasons.We discuss several media that exhibit 

such unique disorder, including paper, fibers, magnetic disks, radio-wave scatterers, and 

optical tokens. [2] 

PUFs are the second important class of disordered systems that can be employed 

for reliable identification, authentication, key storage, and other security tasks. The term 

and acronym PUF for denomination of this class first appeared in [14]. In a nutshell, a 

PUF is a disordered physical system S that, when interrogated by a challenge (or input, 

stimulus) denoted by Ci, generates a unique device response (or output) denoted by RCi. 

This response shall depend on the applied challenge and on the specific disorder and device 

structure of the PUF. The unclonability requirement in the PUF definition is that it should 

be intractable for an adversary with physical access to create a physical or software clone of 

a PUF. Both the challenge-response pairs of PUFs and the fingerprints of Unique Objects 

have the purpose of uniquely identifying any device with high probability. In order to realize 

this in practice, we need stable repeated measurements, and must be able to cope with noise 

and varying operational conditions. 

Two important metrics that are typically applied to categorize the uniqueness and 

robustness of PUF responses are inter- and intra- device distances. Inter -device distance is 

often quantified as the average Hamming distance between the responses to the same chal-

lenge obtained from two different PUFs, or the average distance between the fingerprints of 

two unique objects measured in the same conditions. Intra-device distance is the average 

Hamming distance between the responses to the same challenge applied at different times 
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Chapter 2 Weak PUF 

and environmental conditions to the same PUF. Ideal PUFs should lead to large inter-

device (50%) and small intra-device (0%) distances. Another key requirement for PUFs is 

the entropy of the resulting responses or fingerprints. The entropy quantifies the number of 

independent IDs that can be generated by the same device architecture. Fig.2.1 shows var-

ious categories on how the the classification is made for security based on physical disorder 

given by [2]. 

Figure 2.1: Categories of security provided based on physical disorder [2] 

2.2 Weak PUF 

One class of Physical Unclonable Functions based on inherent device variations are Weak 

PUFs [3]. They exploit the disordered, unique, internal structure of the underlying fabric 

as a nonvolatile memory for storing the secret keys [15]. In an ideal case, the volatile keys 

generated by Weak PUFs upon power-up cannot be determined by external and invasive 

attacks due to construction or tamper-proof properties of the pertinent structure. Weak 

PUFs are also known under the name of Physically Obfuscated Keys (POKs). The Weak 

PUF has limited number of Challenge-response pairs (CRPs) in contrast to the Strong 

PUFs. [2] 

1.Challenge-Response Pairs: A Weak PUF can be interrogated by one (or a very small 
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number of) fixed challenge(s) Ci, upon which it generates response(s) RCi that depends on 

its internal physical disorder. 

2.Key Derivation: The response(s) RCi from a Weak PUF is (are) exploited by the device 

for deriving a standard digital key that can be used for security applications. 

3.Practicality and operability : The generated response RCi should be sufficiently stable and 

robust to environmental conditions and multiple readings. 

2.2.1 ICID PUFs 

Figure 2.2: Array of ICID transistors producing a sequential random voltage proposed in [3] 

ICID is the first proposed and designed circuit structure for generating a Weak 

PUF (or random chip ID) based on process variations [3]. They devised an array of address-

able MOSFETs (shown in Fig.2.2), with common gate and source and sequentially selected 

drains driving a resistive load. Because of device threshold voltage mismatches (resulting 

from process variation) the drain currents are randomly different. Therefore, at each die, 

a unique sequence of random voltages would be generated at the load. ICID exploits these 
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unique sequences of random but repeatable voltages to construct unique identification. In 

0.35um technology, the authors reported about 10% false positive and false negative results 

for repeating random bits on their test circuits. Identification capability can be improved 

by increasing the bit length. 

2.2.2 Physically Obfuscated Keys 

Under the name of a Physically Obfuscated Key (POK), Gassend proposed a type of Weak 

PUF that was built from the first integrated Strong PUF [cite]. The POK/Weak PUF 

would only utilize one (or a small subset) of all possible challenges for a Strong PUF. This 

allows using them exactly as a digital key that is more resistant to physical attack, because 

it extracts its information from a complex physical system. [16] 

2.3 Strong PUF 

Immediately after the introduction of Weak PUFs or POKs, a second class of PUFs was 

put forward [14]. They have later often been referred to as Strong PUFs. In a nutshell, a 

Strong PUF is a disordered physical system with a very complex inputoutput behavior that 

depends on its disorder. The system must allow very many possible inputs or challenges, 

and must react with outputs or responses that are a function of the applied challenge and 

of the specific disorder present in the system. The input/output behavior should be so 

complex that it cannot be imitated numerically or by any other device. More specifically, 

a Strong PUF is a disordered physical system S with the following features: [2] 

1.Challenge-Response Pairs: The Strong PUF can be interrogated by challenges Ci, upon 

which it generates a response RCi that depends on its internal physical disorder and the 

incident challenge. The number of CRPs must be very large; often (but not always) it is 

exponential with respect to some system parameter, for example with respect to the number 

of components used for building the PUF. 

2.Practicality and operability : The CRPs should be sufficiently stable and robust to envi-

ronmental conditions and multiple readings. 

3.Access mode: Any entity that has access to the Strong PUF can apply multiple challenges 
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to it and can read out the corresponding responses. There is no protected, controlled or 

restricted access to the PUFs challenges and responses. 

4.Security : Without physically possessing a Strong PUF, neither an adversary nor the PUFs 

manufacturer can correctly predict the response to a randomly chosen challenge with a high 

probability. This shall hold even if both parties had access to the Strong PUF at an earlier 

time for a significant period, and could make any reasonable physical measurements on the 

PUF, including (but not limited to) determination of many CRPs. 

More architectures from Strong PUF design will be discussed in chapter-3. 

2.4 Controlled PUF 

Let us start by specifying the notion of a Controlled PUF: A Controlled Physical Unclonable 

Function (CPUF) is a PUF that has been bound with an algorithm in such a way that it 

can only be accessed through a specific Application Programming Interface (API). The 

main problem with (uncontrolled) Strong PUFs is that anybody can query the PUF for 

the response to any challenge. To engage in cryptography with a PUF device, a user who 

knows a CRP has to use the fact that only he and the device know the response to the users 

challenge. But to exploit that fact, the user has to tell the device his challenge so that it 

can get the response. The challenge has to be told in the clear because there is no key yet. 

Thus a man in the middle can hear the challenge, get the response from the PUF device 

and use it to spoof the PUF device. Clearly, the problem in this attack is that the adversary 

can freely query the PUF to get the response to the users challenge. By using a CPUF in 

which access to the PUF is restricted by a control algorithm, this attack can be prevented. 

The API through which the PUF is accessed should prevent the man-in-the-middle attack 

we have described without imposing unnecessary limitations on applications. 

While the details of various CPUF APIs are beyond the scope of this thesis, useful 

APIs have been developed [4] that satisfy the following properties: [2] 

1.Access Control : Anybodywho knows a CRP that nobody else knows, can interact with the 

CPUF device to obtain an arbitrary number of other CRPs that nobody else knows. Thus 

users are not limited to using a small number of digital outputs from the PUF. Moreover, if 
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one of these new CRPs was revealed to an adversary, transactions that use the other CRPs 

are not compromised. This is analogous to key management schemes that use session keys 

derived from a master key. 

2.Secret Sharing : Anybody can use a CRP that only they knowto establish a shared secret 

with the PUF device. Having a shared secret with the PUF device enables a wide variety 

of standard cryptographic primitives to be used. 

3.Control Algorithm: The control algorithm is deterministic. Because hardware random 

number generators are sensitive and prone to attack, being able to avoid them is advanta-

geous. 

4.Cryptographic Primitive The only cryptographic primitive that needs to be built into the 

control algorithm is a collision resistant hash function. All other cryptographic primitives 

can be updated during the lifetime of the CPUF device. 

By selecting an appropriate API, a CPUF device can be resistant to protocol 

attacks. With careful design, Optical and Silicon PUFs can be made in such a way that the 

chip containing the control logic is physically embedded within the PUF: the chip can be 

embedded within the bubble-containing medium of an Optical PUF, or the delay wires of 

a Silicon PUF can form a cage on the top chip layer. This embedding should make probing 

of the control logic considerably more difficult, as an invasive attacker will have to access 

the wires to be probed without changing the response of the surrounding PUF medium. 

The PUF and its control logic have complementary roles. The PUF protects the 

control logic from invasive attacks, while the control logic protects the PUF from protocol 

attacks. This synergy makes a CPUF far more secure than either the PUF or the control 

logic taken independently. Figure 2.3 demonstrates an example architecture of how a con-

trolled PUF can be used for improving a PUF. A random hash function is placed before 

the PUF to prevent the adversary from doing a PUF chosen challenge attack. So a model-

building adversary is prevented from selecting challenges that allow him to extract the PUF 

parameters. To ensure response consistency, an Error Correcting Code (ECC) is used. An 

output random hash function is used to decorrelate the response from the actual physical 

measurements, and therefore rendering a model-building adversarys task even harder. 
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Figure 2.3: Controlled PUF architecture [4] 

2.5 Emerging PUF Concepts 

There are a number of new concepts that have emerged in the area of PUFs, and the pace 

of innovation is rapid. They cannot be categorized in the above mentioned groups. Two 

such interesting designs (concepts) are discussed here. 

2.5.1 Quantum Readout PUFs 

[17] proposed modifying the challenge-response mechanism of a PUF with quantum states, 

called a Quantum Readout PUF. The properties of the quantum states prevent an adversary 

from intercepting the challenges and responses without modifying them. Thus, there is no 

need for a trusted location for bootstrapping. However, no proof-of-concept implementation 

or practical architecture for this structure has been proposed to date. Finally, interfacing 

the quantum readout device to the regular PUF is likely a challenge. 

2.5.2 SHIC PUFs 

Super-High Information Content, abbreviated SHIC PUFs [18]. SHIC PUFs are Strong 

PUFs whose large number of CRPs are pairwise independent in an information-theoretic 

sense. Unlike other Strong PUFs, this allows them to become independent of computational 
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assumptions in their security. The price they pay is a relatively large area consumption and 

slow read-out speed on the order of 102 to 104 bits per second. SHIC PUFs are unlikely to 

be used in low-cost commercial applications in the near future, since there are other, more 

favorable solutions to this end. But they represent an intriguing theoretical tool, since they 

are a variant of Strong PUFs with information-theoretic security. 

13 
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Strong PUF 

In 2002, Pappu [19] suggested an optical system as the historically first PUF. It consists 

of a laser beam, which is directed at a transparent scattering token comprising of many 

randomly distributed scatterers. The laser light is scattered multiple times in the token 

and interferes constructively and destructively with itself. This leads to an interference 

pattern of bright and dark spots on a subsequently placed CCD. This pattern sensitively 

depends not only on the location of the scatterers in the token but also on the angle and 

point of incidence of the laser light (and on other parameters of the setup). The angle and 

point of incidence of the laser beam are usually regarded as the challenge of this PUF, while 

the interference pattern (or a suitably chosen image transformation of it) is interpreted as 

its response. This optical Strong PUF offers high internal complexity and security. On 

the downside, it cannot be integrated easily into an electronic microsystem, and requires 

an external, precise readout apparatus. Relatively soon afterward, integrated, electrical 

candidates for Strong PUFs have been suggested. One important example is the so-called 

Arbiter PUF [5], which exploits the natural variations in the runtime delays of integrated 

circuits. 

Strong PUFs offer an enormous number of CRPs, often scaling exponentially with 

the required IC area. Despite their small response space, mostly n = 1, architectures are 

typically able to provide a large challenge space, for example, m = 128. Figure 3.1 shows 

total number of input challenge bits and the maximum possible challenge developed . There-

fore, they might greatly exceed the need for secret key generation and have been promoted 
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Figure 3.1: Exponential availability of CRPs in Strong PUF 

primarily as lightweight authentication primitives. The most famous example is the arbiter 

PUF [5]. However, correlations among CRPs are severe, as these are not only spatial in 

nature but also induced by the functional behavior. Therefore, unprotected exposure to the 

PUF might enable so-called modeling attacks. 

3.1 Arbiter PUF 

Almost simultaneously to optical PUFs, the first integrated electrical Strong PUFs includ-

ing Arbiter PUFs were put forward in [5]. Unlike optical PUFs, silicon PUFs do not require 

external measurement equipment. They are based on the runtime delay variations in elec-

trical circuits. In one implementation, an electrical signal is split into two parallel signals, 

which race against each other through a sequence of k electrical components, for example, k 

multiplexers. This architecture is shown in Fig. 4.10. As shown in the figure, the challenges 

are applied to the selectors of the multiplexers. The exact signal paths are determined by 

these challenge bits b1, ....., bk applied at the multiplexers. At the end of the k components, 

an arbiter element decides which of the two signals arrived first and correspondingly outputs 

a zero or a one, which is regarded as the systems response. 

It was clear from the beginning that these first electrical candidates were prone 

to modeling attacks as mentioned in [7]. Attacks using machine learning algorithms have 

been carried out. In these attacks, the adversary collects many challenge-response pairs 
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Figure 3.2: (a) Demonstration of an arbiters operation: the relative time of signal arrival 
at Line1 and Line2 would determine the value of the output bit; (b) Demonstration of a 
selectors operation: the selector bit would decide if the top and bottom lines continue in the 
same order, or they switch places; (c) An arbiter PUF with 128 challenge bits c0, ....., c127 

applied as the selectors to the switches. The switch selectors dynamically configure two 
parallel paths with random delay differences that would form the response generated by the 
arbiter [5]) 

(CRPs), and uses them to derive the runtime delays occurring in the sub-components of 

the electrical circuit. Once they are known, simple simulation and prediction of the PUF 

becomes possible, breaking its security. More details about the modeling will be explained 

in chapter-4. One reason why these attacks worked so well lies in the fact that plain Arbiter 

PUFs have relatively simple linear models, in which the delay of each of the two signals can 

be approximated as the linear sum of the delays in the sub-components. Later, architectures 

were developed to introduce more non-linearity into the design. 

3.2 XOR Arbiter PUF and Feed Forward Arbiter PUF 

The earlier issues naturally led to the introduction of nonlinear electrical PUFs, for example, 

XOR arbiter PUFs, Lightweight Secure PUFs, and Feedforward Arbiter PUFs [10], [5], [11]. 

In an XOR arbiter PUF, multiple arbiter outputs are XORed to form a response. In Fig.3.3, 

an example is shown where two arbiter outputs are XORed. In the Feedforward Arbiter 
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Figure 3.3: XOR Arbiter PUF 

PUF, the output of intermediate multiplexer(s) on the signal paths are input to so called 

Feedforward arbiter(s). The Feedforward arbiter output is then fed to the input of another 

multiplexer forward on the signal path. In Fig.3.4, an example of a Feedforward arbiter 

structure is shown. All of the aforementioned structures employ the basic Arbiter PUF 

architecture, but refine its architecture by introducing additional, nonlinearities. These 

structures showed a significantly higher resilience against machine learning attacks, but still 

could be attacked up to a certain level of size and complexity [20]. Arbiter PUFs and their 

variants have been shown to have small and stable integrated electrical implementations 

and have been commercialized [21]. 

Figure 3.4: Feedforward Arbiter PUF 
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The Feedforward PUF shows more immunity against modelling attacks when com-

pared to XOR PUF due to its non-linear delay path [7]. We can notice that many switch 

components are being activated using the response that is developed form the function of 

exciting delay lines through the Feed Forward Arbiters. 
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Machine Learning Modelling 

Attacks 

The promise of using PUF for authentication due to its unique properties of unclonability 

and unpredictability is debatable in recent times due to various modeling attacks based on 

machine learning (ML) algorithms. While ML algorithms are not new, the recent advances 

in computing power has enabled mounting of complicated ML attacks on PUF cells. For 

a given number of CRPs the attack is successful when the PUF’s complex functions are 

digitally cloned, providing high accurate predictions for the response developed through ML 

algorithms from unknown challenges. [12] shows that use of support-vector machine (SVM) 

attack on the well-known arbiter PUF [5] can predict PUF response with an accuracy >90% 

and the prediction accuracy improves as the attacker has access to more CRPs. [7] shows 

successful modeling attacks (prediction accuracy of 99%) on various PUF architectures 

using logistic regression (LR) algorithm. [20] shows arbiter PUF and 2-XOR arbiter PUF 

are broken through SVM model with accuracy >95% and >80% respectively. [22,23] show an 

accuracy of >95% and >97% for prediction when ML modeling attacks based on evolution 

strategies (ES) were made against current-based PUFs and arbiter-PUFs respectively. [24, 

25] employs artificial neural network (ANN) based ML modeling attack on feed forward 

PUFs and 64bit/128bit XOR PUFs resulting in prediction accuracy of >84% and >98% 

respectively. These cases show that PUFs can be broken through modeling attacks using 
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ML algorithms. 

1) Strong PUFs: Strong PUFs are PUFs with very many possible challenges and 

a complex input-output relation. They are the PUF class for which our modeling attacks 

have been designed originally, and to which they are best applicable. The reason is that 

Strong PUFs usually have no protection mechanisms that restrict Eve applying challenges 

or in reading out their responses. Their responses are usually not postprocessed on chip in 

a protected environment. Most electrical Strong PUFs further operate at frequencies of a 

few MHz. Therefore even short physical access periods enable Eve to read-out and collect 

many CRPs. Another potential CRP source is simple protocol eavesdropping, for example 

on standard Strong PUF-based identification protocols, where the CRPs are sent in the 

clear. Please note that both eavesdropping on responses as well as physical access to the 

PUF is part of the established, general attack-model for PUFs. Once a predictive model for 

a Strong PUF has been derived, the two main security features of a Strong PUF no longer 

hold: The PUF is no longer unpredictable for parties that are not in physical possession of 

the PUF; and the physical unclonability of the PUF is overcome by the fact that the digital 

simulation algorithm can be cloned and distributed arbitrarily. Any Strong PUF protocol 

which is built on these two features is then no longer secure. [7] 

2) Controlled PUFs: Controlled PUFs are a second PUF type, which consists 

of an underlying Strong PUF with a surrounding control logic. The challenge-response 

interface of the Strong PUF is not directly accessible, but is protected by the logic. Any 

challenges applied to the Controlled PUF are preprocessed by the logic before they are 

input to the Strong PUF, and any responses of the Strong PUF are postprocessed by the 

logic before they are being output by the Controlled PUF. Both the pre- and postprocessing 

step can add significantly to the security of a Controlled PUF. For any adversary that is 

restricted to noninvasive CRP measurement, Controlled PUFs successfully disable modeling 

attacks if the control logic uses a secure one-way hash over the outputs of the underlying 

Strong PUF.We note that this requires internal error correction of the Strong PUF outputs 

inside the Controlled PUF, since they are inherently noisy. Furthermore, it introduces a 

new, additional presumption, namely the security of the applied one-way hash function. 

Successful application of the techniques to a Controlled PUF only becomes possible if data 
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can be extracted from the internal probe, digital response signals of the underlying Strong 

PUF on their way to the control logic. Even though this is a significant assumption, 

probing digital signals is still easier than measuring continuous analog parameters within 

the underlying Strong PUF, for example determining its delay values. Note again that 

physical access to the PUF is part of the natural attack model on PUFs, as mentioned 

above. If a Controlled PUF has been modeled, the same effects for protocols resting on 

their unpredictability and physical unclonability apply that is explained above. 

3) Weak PUFs: Weak PUFs (or POKs) are PUFs with few, fixed challenges, in the 

extreme case with just one challenge. It is usually assumed that their response(s) remain 

inside the PUF-carrying hardware, for example for the derivation of a secret key, and are 

not easily accessible for external parties. Weak PUFs are the PUF class that is the least 

susceptible to the presented modeling attacks. 

Support Vector Machine (SVM) and Logistic Regression are the two main algo-

rithms that are used to model the PUF. 

4.1 Support Vector Machine and Logistic Regression 

In machine learning, support-vector machines (SVMs, also support-vector networks) are 

supervised learning models with associated learning algorithms that analyze data used for 

classification and regression analysis [6]. Given a set of training examples, each marked as 

belonging to one or the other of two categories, an SVM training algorithm builds a model 

that assigns new examples to one category or the other, making it a non-probabilistic binary 

linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic 

classification setting). An SVM model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are divided by a clear gap that is 

as wide as possible. New examples are then mapped into that same space and predicted 

to belong to a category based on which side of the gap they fall [6]. Fig.4.1a shows two 

different datasets, and a linear SVM model classifies them in a hyper plane as seen in that 

figure. In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick, implicitly mapping their inputs 

21 

https://Fig.4.1a


Chapter 4 Support Vector Machine and Logistic Regression 

into high-dimensional feature spaces. Here we have implemented Radial base function to 

classify more non-linear dataset as shown in Fig.4.1b. 

(a) (b) 

Figure 4.1: Support Vector Machine with (a) linear and (b) non-linear (RBF-kernal) clas-
sification [6] 

Logistic regression (LR) is the other important method employed to attack the 

PUF, LR is appropriate regression analysis to conduct when the dependent variable is 

dichotomous (binary). Like all regression analyses, the logistic regression is a predictive 

analysis [26]. Logistic regression is used to describe data and to explain the relationship be-

tween one dependent binary variable and one or more nominal, ordinal, interval or ratio-level 

independent variables. Mathematically, a binary logistic model has a dependent variable 

with two possible values, such as pass/fail, win/lose, alive/dead or healthy/sick; these are 

represented by an indicator variable, where the two values are labeled ”0” and ”1”. In the 

logistic model, the log-odds (the logarithm of the odds) for the value labeled ”1” is a linear 

combination of one or more independent variables (”predictors”); the independent variables 

can each be a binary variable (two classes, coded by an indicator variable) or a continuous 

variable (any real value). The corresponding probability of the value labeled ”1” can vary 

between 0 (certainly the value ”0”) and 1 (certainly the value ”1”), hence the labeling; the 

function that converts log-odds to probability is the logistic function, hence the name. The 

Logistic function is shown in Fig.4.2. The binary logistic regression model has extensions 

to more than two levels of the dependent variable: categorical outputs with more than two 

values are modeled by multinomial logistic regression, and if the multiple categories are 
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ordered, by ordinal logistic regression, for example the proportional odds ordinal logistic 

model. The model itself simply models probability of output in terms of input, and does 

not perform statistical classification (it is not a classifier), though it can be used to make 

a classifier, for instance by choosing a cutoff value and classifying inputs with probability 

greater than the cutoff as one class, below the cutoff as the other; this is a common way to 

make a binary classifier. 

Figure 4.2: Function used for logistic regression 

We used ML algorithms from [6] for SVM and [26] for LR to establish attacks on 

the PUF designs explained in chapter-7 

4.2 Machine Learning Modelling Attack on PUF 

1) Arbiter PUFs: Arbiter PUFs (Arb-PUFs) were first introduced in [5]. It has become 

standard to describe the functionality of Arbiter PUFs via an additive linear delay model . 

The overall delays of the signals are modeled as the sum of the delays in the stages. In this 

model, one can express the final delay difference δ between the upper and the lower path in 

a k-bit Arb-PUF as δ = ωθ, where ω and θ are of k + 1 dimension. The parameter vector ω 

encodes the delays for the subcomponents in the Arbiter PUF stages, whereas the feature 

vector θ is solely a function of the applied k-bit challenge Ci. The output t of an Arbiter 

PUF is then determined by the sign of the final delay difference δ. The author made the 

technical convention of saying that t = −1 when the Arbiter PUF output is actually 0, and 
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t = 1 when the Arbiter PUF output is 1: [7] 

t = sgn(δ) = sgn(ωθ) (4.1) 

Equation 4.1 shows that the vector ω via ωθ = 0 determines a separating hyperplane 

in the space of all feature vectors θ. Any challenges Ci that have their feature vector located 

on the one side of that plane give response t = −1, those with feature vectors on the other 

side t = 1. Determination of this hyperplane allows prediction of the PUF. [7] 

2) XOR Arbiter PUFs: One possibility to strengthen the resilience of arbiter 

architectures against machine learning, which has been suggested in [cite], is to employ l 

individual Arb-PUFs in parallel, each with k stages (i.e., each with bitlength k). The same 

challenge Ci is applied to all of them, and their individual outputs ti are XORed in order 

to produce a global response tXOR.We denote such an architecture as l-XOR Arbiter PUF 

(with the 1-XOR Arbiter PUF being identical to the standard Arbiter PUF). A formal 

model for XOR Arbiter PUFs can be derived as follows. Making the convention ti > (−1, 1) 

as done earlier, it holds that tXOR = Ll
i=1 ti. This leads with equation 4.1 to a parametric 

model of an l-XOR Arbiter PUF, where ω and θ denote the parameter and feature vector, 

respectively, for the i-th Arbiter PUF: [7] 

l l 

tXOR = M sgn(ωθ) = sgn exp „M ωθ‚ (4.2) 
i=1 i=1 

tXOR = sgn(`l
i=1ω ` il =1 θ) = sgn exp (ωXORθXOR) (4.3) 

While 4.2 gives a nonlinear decision boundary with l(k +1) parameters, 4.3 defines 

a linear decision boundary by a separating hyperplane ωXOR which is of dimension (k +1)l . 

Using this the authors have modelled the PUF by extracting few CRPs and then 

allowing ML algorithms to predict the possible CRPs which is not been exposed to the 
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algorithms. We can note that as the prediction increases the chances of predicting the 

outcome of the PUF for any input challenge becomes easy. Thus the PUF is digitally 

cloned and is no more unpredictable. 

(a) (b) 

Figure 4.3: Machine Learning attack on (a) Arbiter PUF and (b) XOR-Arbiter PUF [7] 
NOTE: Prediction Error = 1 - Prediction Accuracy 

Fig.4.3a and Fig.4.3b shows that Arbiter and XOR Arbiter PUFs output is pre-

dictable at almost 99% accuracy after the CRP is almost around 10000 bits. With high 

speed digital processing device at existence it will take very less time to extract this infor-

mation on side channel attacks. Table 4.1 shows that all the Strong PUFs that have been 

discussed are prone to the Machine Learning modelling attack. 

Table 4.1: Machine learning modelling attacks on strong PUF [7] 

PUF 

Type 

No of XORs 

/ FF-Loops 

ML 

Method 

Bit 

Length 

CRP 

Source 

CRPs 

(×103) 

Prediction 

Rate 

Arbiter PUF − LR 128 ASIC 6.5 99% 

XOR Arbiter PUF 5 LR 128 ASIC 78 99% 

FF Arbiter PUF 8 ES 128 Simulation 50 99% 
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Machine Learning Attack Resistive 

PUF 

Chapter-4 leaves an understanding that most of the PUFs are predictable with the pre-

diction accuracy close to 99%, thus bringing in the need to develop ML modelling attack 

immune PUFs. Two such recent works are discussed here. 

5.1 SCA PUF 

The key for engineering a secure silicon PUF is identifying an output function that would 

be nonlinear in random variables. [8] introduces a highly unpredictable PUF that uses 

the strongly non-linear I-V terminal dependencies to generate PUF responses. Its central 

feature is that it moves away from the delay/digital implementation paradigm towards the 

current/analog one, thereby realizing the necessary degree of nonlinearity over a space of 

permutations. Because it doesnt rely on digital techniques for injecting the nonlinearity, it 

does not compromise the stability in the output response to environmental variations [8]. 

The output function should ideally have two properties: (1) be nonlinear in random 

parameters, and (2) introduce the coupling effect in which two or more random variables 

interact in producing the output. Both of these properties are enabled if the binary output 

is produced by comparing two voltages produced by a suitably arranged network of FETs 

operating in subthreshold region. The equation relating the subthreshold current to FET 
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terminal voltages given in equation 5.1 

− 
Vgs−Vth+λVds+γVbs −nVds 

SIds = Is10 
‘ ‰1 − 10 S ’ (5.1) 

where Ids is the drain-to-source subthreshold current, Is is the nominal current, 

Vgs is the gate-to-source voltage, Vth is the transistor threshold voltage, Vds is the drain-

to-source voltage, Vbs is the body-to-source voltage, and λ, γ, and n are the coefficients of 

drain-induced barrier lowering and body bias, and the subthreshold coefficient respectively. 

Crucially, the current is exponentially dependent on the threshold voltage Vth. This is 

important because Vth exhibits large and spatially-uncorrelated variability due to random 

dopant fluctuation (RDF). In nanometer scale CMOS devices, RDF is very significant and 

grows with transistor scaling. Equation 5.1 also captures the impact of physical mechanisms 

of drain-induced barrier lowering and of body effect which lead to a dependence of Vth on 

Vds and Vbs. In the second part of the equation, we use a linear expansion of Vth in terms 

of Vds and Vbs to enable closed-form analysis. 

(a) (b) 

Figure 5.1: SCA PUF (a) Architecture and (b) Array schematics of the PUF [8] 

Figure 5.1a depicts the overall architecture of the SCA (Sub-threshold Current 

Array) PUF. The PUF is implemented as a two-dimensional transistor array with all devices 

subject to stochastic variability operating in subthreshold region. Each PUF consists of 

two nominally identical arrays. The array schematic is shown in Figure 5.1b. The array is 

composed of k columns and n rows of a unit cell. We use the term stochastic transistor to 

refer to a device with high amount of threshold voltage variability. The unit cell consists 

of a stochastic subthreshold nFET, which is a transistor with a highly variable threshold 
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(a) (b) 

Figure 5.2: SCA PUF (a) Inter-PUF HD and (b) Machine learning immunity [8] 

voltage that always operates in the subthreshold region. A non-stochastic switch transistor 

is arranged in parallel to the stochastic FET. The non-stochastic transistor M0 acts as a 

load device and operates in the subthreshold region (its gate terminal is tied to ground). 

At the bottom of each column of cells is a footer transistor Miy controlled by the challenges 

Ci1...Cin. Its role is to ensure that there is never a low-impedance path to ground from 

Vout. Both array blocks are driven with the same set of control inputs and thus in the 

absence of variability produce identical voltages. The randomness of transistor threshold 

voltages leads to the differences in two output voltages. The binary response is generated 

by comparing the output voltages produced by the two arrays via a comparator. The size 

of the CRP set is 2kn , making it a strong PUF. 

Inter die hamming distance and hamming weight showing the PUFs uniqueness 

and randomness, is taken across 50 dies with 500 challenges. For this design, the average 

normalized inter-die HD is 0.499 with standard deviation of 0.043 and average hamming 

weight is 0.528 (standard deviation = 0.109) shown in Figure.5.2a. The Intra-die HD used 

as a measure of bit error rate (BER) and temporal stability, is measured across 5 dies with 

500 challenges, across the temperatures of -20XC to 80XC and voltages of 1.08-1.32V and its 

average is found to be 0.058 with standard deviation of 0.038. The worst case BER or 9% is 

reduced using dynamic thresholding technique to 2.6% with 42% loss in CRPs in the worst 

case. The number of usable CRPs are almost 3.7x1019 and overall energy consumed by this 

design is 11pJ/bit. The non-linearity extracted form sub-threshold operation of the SCA-
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PUF makes it immune to the machine learning modelling attacks shown in Figure.5.2a. 

When compared to the Arbiter PUF at 10000 CRPs the machine learning prediction is 

around 60%. 

5.2 SRAM PUF 

Figure 5.3a shows a conventional SRAM PUF cell, which is usually based on the start-up 

value at power-up. The start-up value is determined by the relative strength of the two 

inverters in the cross-couple. The challenge-response space of a conventional SRAM PUF is 

equal to number of bits in the memory, and it can only be used as a chip ID. The proposed 

PUF is also an SRAM-based design, but is independent of the power-on state. The basic 

concept is to connect any two bit cells in the SRAM with complementary data initialization 

by simultaneously asserting their word-lines. The value they resolve to depends on the 

relative strength of all the 12 transistors of the two bit-cells, and their initial value. To 

illustrate, Figure 5.3b shows a small array with checkerboard initialization. Word lines 

WL1 and WL4, are asserted and the bit cells in the two rows with opposite states fight 

over the bit lines in each column, and resolve to a single value. Consequently, the challenge-

response space is increased as we can choose any two rows from the array. For n rows, we 

have n2 choices of pair-wise row selection. 

(a) (b) 

Figure 5.3: SRAM PUF (a) Basic architecture and (b) Small array [9] 
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A sequence of initialization is made in such a way that two rows are turned on 

simultaneously. This results in a two differently ordered sequence that results in a final 

value in row 1 or in row 3. Therefore, both row selection and the order (permutations) 

in which the selected rows are sequentially connected determine the response of the PUF, 

making it more difficult to learn by ML algorithms. 

The design is fabricated in 28nm technology and the average normalized inter-

die HD is 0.481 to 0.495 shown in Figure.5.4a. The Intra-die HD is measured across the 

temperatures of 0XC to 80XC and voltages of 0.5-0.9V and its average is found to be 0.058. 

The worst case BER of 3.17%. The number of usable CRPs are almost 1.17x1011 and 

overall energy consumed by this design is only 97fJ/bit. Fig5.4b shows that the design is 

ML modelling attack resistant, yet gives a higher prediction error of around 89.1% 

(a) (b) 

Figure 5.4: SRAM PUF (a) Inter-PUF Hamming Distance and (b) Machine learning im-
munity 
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Proposed Architecture 

6.1 Voltage Divider Array Strong PUF Circuit 

(a) (b) 

Figure 6.1: Voltage divider array strong PUF’s (a) Unit cell and (b) schematics 

It is established that in order to make the PUF resist the machine learning 

modelling-attacks, one needs to design a non-linear system. Non-linear system can tend 

to be less reliable but once the system is also made reliable, the overall hardware circuit 

becomes more secure. We know from equation 5.1 that at Subthreshold condition the cur-

rent of the MOSFETs act more non-linear compared to the drain currents when they are 

in saturation condition. This idea can be extracted to construct a non-linear, yet a highly 
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reliable design. The proposed PUF is constructed in 65nm technology. The fundamental 

block of this architecture is the Unit-PUF cell shown in Figure 6.1a. A unit PUF cell com-

prises an inverter (Transistor M1 and M2 with gate and drain shorted and an NMOS tail 

current source biased in subthreshold. Along with the inverter topology the unit PUF cell 

is also provided a sleep switch M3 that disconnects the PUF from the power source and 

the bias current is fed in through the M4 transistor shown in 6.1b. The challenges Ci are 

provided to the transistor M5 which connects the Unit-PUF cell to the output Vout. 

Figure 6.2: Proposed Architecture 

A 1-b PUF output is obtained by comparing the drain voltage of two such unit 

PUF cells. To form a strong PUF, we use two arrays of N ‘nominally identical’ unit PUF 

cells shown in Figure 6.2.The challenge inputs, C1 through CN , determine which of the 

N unit PUF cells in both arrays are connected to the differential inputs of a comparator. 

For this design, we have 60 unit PUF cells in each array corresponding to 260 possible 

CRPs. This makes this design a Strong PUF, providing to use almost equal to 1.1529e + 18 

combinations. The PUF array used in this design has an intrinsic advantage over the 

current-array PUF of [8] in that the comparator input common-mode voltage does not 
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vary significantly with the challenge pattern. Variation of comparator input common-mode 

voltage results in challenge pattern dependent offset and is problematic for comparator 

offset cancellation. 

Figure 6.3: Non-linearity in PUF array with 2 unit cells 

The output of the PUF is extracted from the comparator which undergoes ma-

jority voting that improves the stability of the system. Fig. 6.6c shows how nonlinearity is 

introduced in output voltage of the proposed PUF using 2 unit cells. The currents I1 and 

I2 through the two unit PUF cells using equation 5.1 can be written as 

− Vth1 − Vth4
I1 = Is exp ‰VB ’ ; I2 = Is exp ‰VB ’ (6.1)

ηVT ηVT 

where Vth1 and Vth4 denotes threshold voltages of M1 and M4 respectively, VT is 

thermal voltage kT ~q, VB is biasing voltage for NMOS tail current source and it is assumed 

that Vds of M1 and M4 is greater than 100mV. When the two unit PUF cells are connected 

together, the output voltage Vout can be expressed as 

VDD − Vout − SVthpS 
I1 + I2 = Is1 exp „ ‚ (6.2)

ηVT 

where SVthpS is the threshold voltage of PMOS transistor. 
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− Vth1 − Vth4
Vout = VDD − SVthpS − ln ‰ Is ’ − ln �exp ‰VB ’ + exp ‰VB ’� (6.3)

Is1 ηVT ηVT 

It can be seen that 6.3 is a transcendental equation and Vout is nonlinear in terms 

of threshold voltages of the NMOS tail current sources. Second-order effects such as drain 

induced barrier lowering further increase the coupling between threshold voltage and Vout. 

Since threshold voltage exhibits large intrinsic variation due to random dopant fluctuation, 

voltage output of the proposed PUF is expected to show large nonlinear variation which 

cannot be modeled easily through ML attacks. 

Figure 6.4: Strong arm latch comparator 

Fig. 6.4 shows schematic of the comparator used in this design. A strong-arm 

latch is used as comparator.The comparator has two auxiliary input transistors for offset 

calibration shown in blue. The auxiliary transistors are controlled by the voltages Vcp and 

Vcm which are used to tune the comparator offset [8]. During offset calibration phase, the 

comparator inputs are shorted, the comparator is fired multiple times and the distribution 

of ‘1’ in the comparator output is observed. If the comparator has an offset, its output 

will have unequal distribution of ‘0’ and ‘1’. The voltages Vcp and Vcm are used to bias the 

auxiliary input transistors to ensure the comparator has approximately equal distribution 

of ‘0’ and ‘1’. The transistors in green are the amplifiers and the ones that are in red are the 

latches. For this design, comparator offset calibration is done in the foreground at nominal 
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conditions of 0.9V power supply and at room temperature. 

6.2 Choice of Operating Voltage 

In order to ensure the reliable performance of the PUF, the noise of the PUF should be 

at the minimal. The comparator is the dominant noise source and thus following analyisis 

were made to reduce it’s effect. Fig. 6.5 shows the distribution of PUF differential output 

voltage ΔVout for two extreme cases: (a) when only 1 challenge input is ‘1’ and (b) when all 

challenge inputs are ‘1’. The distributions are extracted from 500 monte-carlo runs. When 

only 1 challenge input is ‘1’, ΔVout has a large spread and a standard deviation, σmis, of 

35mV. When all challenge inputs are ‘1’, σmis reduces to 5mV. 

(a) (b) 

Figure 6.5: Distribution of PUF differential output voltage for (a) when only 1 challenge 
input is ‘1’ (b) when all challenge inputs are ‘1’ 

Now, the comparator is to be besigned such that the comparator noise is much 

smaller than the worst-case σmis of 5mV for the PUF to have high native stability. There 

is a trade-off between power and comparator noise which can be optimized by tuning the 

biasing voltage, VB. As VB is reduced, the current through unit PUF cells reduces, which 

reduces total power, but the comparator input common-mode voltage increases, which in-

creases comparator noise. Also, the spped of convertion is reduced. Figure 6.6 gives the 

characteristics of chosing Vcmi that will be impacted by the choice of the VB. 

Assuming the comparator has a noise standard deviation of σn, the native stability 
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(a) (b) 

(c) 

Figure 6.6: (a) Vcmi vs Noise sigma (b) Vcmi vs Power consumption (c) Vcmi vs Speed 

of the PUF can be written as 

stability = 1 − erf „º σn ‚ (6.4) 
2σmis 

For this design, VB is set to 200mV such that the comparator noise has a standard 

deviation of 350µV which corresponds to a native stability of 94.4%. In order to improve 

PUF native stability, we perform temporal majority voting of the comparator output. Ap-

plication of majority voting of 7 reduces σn to 132µV which improves PUF native stability 

to 97.9%. We use a 3-bit counter which counts up every-time the comparator output is ‘1’. 

The MSB of the counter is used as 1-b PUF output. The counter is reset every 8th cycle 

of the comparator clock. 
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Measurement Result and Analysis 

7.1 Laboratory Setup 

(a) (b) 

Figure 7.1: (a) Die photo and (b) Layout of proposed PUF 

A test chip is fabricated in 65nm CMOS process. The die micro-photograph and 

layout are shown in Fig. 7.1. Each test chip contains 6 PUFs. Each PUF has an area 

of 110µm×170µm with the core (PUF array+comparator) occupying 40µm×70µm. Each 

blocks shown in Figure 7.1b contains the proposed PUF architecture, LFSR to provide test 

input challenges and a clock generator circuit to vary the throughput of the PUF. 

Figure 7.2 shows the PCB set-up used to measure the data from the PUF. The 

inputs are Voltage source VDD and Clock source Fclk. The output is extracted form the 
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Chapter 7 Laboratory Setup 

Figure 7.2: PCB board for the proposed strong PUF 

logic analyzer that gives the data of 6 PUF’s output and the clock developed from the 

clock generator. Using the trimmers the voltage nodes of bias voltage Vb, common mode 

voltage of comparators (Vcm and Vcp) are defined. The switches R0 and R1 determine the 

frequency of operation. Switch SN activates the sleep mode and turns off the PUF. Switch 

OF S is turned to make offset calibration of the comparator. Table.7.1 shows the operating 

Table 7.1: Selected operating parameters 

Operating Parameters VDD Fclk R0 R1 Vb Vcm Vcp OFS SN RN 

Values 900mV 100MHz 900mV 0V 100mV 401mV 398mV 0mV 0mV 900mV 
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values used for one measurement. 

7.2 Hamming Distance 

Figure 7.3: Measured normalized intra and inter-HD 

Fig. 7.3 shows the measured normalized intra and inter-HD of the PUF. The ideal 

PUF should have the Intra-HD value to 0.5 and the Inter-HD value should be 0. Intra-HD 

is measured for 6 PUFs over a supply range of 0.8V-1V and temperature range of 0-50XC for 

500 challenges. The measured intra-HD is 0.0466 with a standard deviation of 0.038. Inter-

HD is measured for 30 PUFs at 0.9V supply and 27XC for 500 challenges. The measured 

inter-HD is 0.5026 with a standard deviation of 0.0213. The ratio between inter-HD to 

intra-HD is 10.8 which indicates that the proposed PUF has a high uniqueness. 

Figure 7.4: Average BER across supply voltage and temperature 
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Fig. 7.4 shows the measured average BER across supply voltage and temperature. 

The BER with variation in supply voltage and temperature is measured with respect to 

PUF output at 0.9V supply and 27XC temperature. Temperature variation affects BER 

more than supply voltage variation. The worst case BER is 10.9%. 

7.3 Non Linearity and Randomness Analysis 

In order to test the randomness of our PUF, we used NIST randomness tests on 30 PUF 

devices from 5 different test chips. For each PUF, we recorded the response for 16 different 

times. Thus, the NIST tests are performed on 480 PUF response streams. Fig. 7.5 shows 

graphically the results of the NIST tests. For 12/15 NIST tests, the minimum pass rate was 

greater than 0.95. The pass rate for 3 tests, DFT, overlapping template and approximate 

entropy, was between 0.85-0.9. The NIST test results indicate good randomness of the 

proposed PUF. 
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14. Random excursions
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Figure 7.5: NIST randomness test results 

Principal component analysis (PCA) is a statistical procedure that uses an orthog-

onal transformation to convert a set of observations of possibly correlated variables (entities 

each of which takes on various numerical values) into a set of values of linearly uncorrelated 

variables called principal components. 

Here the input of the PUF is expressed into a 2-D figure shown in Figure.7.6 where 
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Figure 7.6: Principal component analysis 

the binary output is plotted over the 2-D figure. The figure shows us that the proposed 

PUF’s output is randomly arranged making it a non-linear model. 

7.4 Machine Learning Immunity 

Figure 7.7: Machine learning modelling attack immunity 

In order to test the susceptibility of the proposed PUF to machine learning attacks, 

we used three different machine learning algorithms: support vector machine with nonlinear 

radial bias function (RBF) kernel, logistic regression, and Random forest. Fig. 7.7 shows the 

results of machine learning attacks on our PUF. For small training set sizes, the prediction 

accuracy rate for the proposed PUF and SCA is close to 50% (Figure.5.2b), while the 
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prediction accuracy rate for arbiter PUF is close to 70%. As the training set size is increased, 

the prediction accuracy rate for our PUF does not change significantly and remains close 

to 50%. The SCA PUF also exhibits similar performance and as training set size increases, 

the prediction accuracy rate for SCA PUF is 60%. On the other hand, the arbiter PUF 

has a prediction accuracy rate of 70% at small training set sizes which reduces quickly to 

99.9% as the training set size is increased to 8000. Thus, use of subthreshold nonlinearity 

makes the proposed PUF and SCA PUF robust against the three different machine learning 

attacks we tried, while the arbiter PUF can be easily modeled with training set sizes > 2000. 

7.5 Figure of Merit 

Each chip contains 6 PUF and each PUF consumes 3.8µW power from 0.9V supply with a 

throughput of 12.5M samples/s. Out of the 3.8µW power, the comparator consumes 1.2µW 

power while the PUF array consumes 2.6µW power. Table 7.2 compares our work with 

state-of-the-art strong PUFs. Compared to existing work, our PUF achieves simultaneous 

high energy efficiency and strong resistance to ML attacks. While the proposed PUF has 

similar resistance to ML attacks as [8], energy efficiency of the proposed PUF is 36× better 

than [8]. The SRAM PUF of [9] has 3× better energy efficiency than the proposed PUF, 

but is 5× more susceptible to ML attacks than the proposed PUF. We propose a figure-of-

merit (FoM) in order to quantitatively compare different PUFs by taking into account both 

energy efficiency and resistance to ML attacks. We define the FoM as the ratio of energy/bit 

and prediction error. Low energy consumption and high prediction error reduces the FoM. 

It can be seen from Table 7.2 that the proposed PUF has the best FoM which is a factor of 

1.5× better than the current state-of-the-art. 
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Chapter 8 

Other Architectures 

8.1 Cascaded Strong PUF 

Figure 8.1: Cascaded strong PUF schematics 

[28] proposes a architecture to cascade the individual Strong PUFs such that the 

response of one PUF is provided at the channel to the next PUF. If each PUF is constructed 
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as a function, then each function will be partially depended on the previous function thus 

making the design highly non-linear. This non-linear function leads to reduction in predici-

ton rate by machine learning algorithams. 

We constructed a similar cascaded PUF shown in Fig.8.1. The proposed strong 

PUF is used as the single block and they are cascaded. Each stage of the cascade is 

formed by connecting an array of 20 unit PUFs differentially connected to the two inputs 

of a comparator. Three such stages are cascaded to form the overall strong PUF with 258 

challenge inputs, with the first stage accepting 220 external challenges and the other two 

stages accepting 219 external challenges. The comparator output of the first stage provides 

the 20th challenge input to the second stage and comparator output of the second stage 

provides the 20th challenge input to the third stage. 

(a) (b) 

Figure 8.2: Cascaded Strong PUF (a) Normalized intra and inter-HD and (b) Machine 
learning modelling attack immunity 

Monte carlo simulations were run on Cadence to analyis the performance of the 

proposed cascaded PUF design. It was run for the temperature variation of -20 to 85XC 

and the voltage variation of 0.75 to 0.9V and 200 CRPs were recorded for Intra-HD, while 

for Inter-HD 30 PUFs were measured at 0.8V and 27XC temperature recording 200 CRPs. 

Figure.8.2a shows that Hamming distance have deteriorated a little. Inter HD is 0.5051 

and the Intra-HD is 0.0693, the results in a BER of 14.75%. But the Machine learning 

prediction rate is around to 60% making the design secure. But the BER is quite high that 

might affect the reliability of the PUF 
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8.2 Controlled Cascaded Strong PUF 

Chapter-2.4 shows that incorporating a authentication block around the PUF provides 

more security. It becomes difficult to model these PUFs because of limited accessibility as 

the authentication block provides added security by encryption and restricting the attackers 

from knowing the actual CRP to the PUF. Figure.8.3 shows an example schematic proposed, 

that makes use of cascaded PUF with and the authentication block to make the overall PUF 

highly secure. Selected challenges Ci under goes simple XOR operation with the user defined 

bits UIDi that acts as the validation code. And the CRPs are masked by MXi which can 

also be altered. The masked challenge now reaches the actual cascaded PUF. 

Figure 8.3: Controlled Cascaded Strong PUF schematics 

The attacker is assumed to have knowledge about the actual challenge and its 

response. Even when training the CRP along with the User defined bits the prediction 

accuracy rate was around 53% (Fig.8.4b) that is favourably less compared to cascaded 

PUF. 

Figure.8.4a shows that the Hamming distance did very much with the cascaded 

PUF design. This architecture was run under the same conditions and the Inter-HD is 

0.4955 while the Intra-HD is 0.0332. 

Table.8.1 gives the comparison among the proposed architectures. Though the 

FoM of Controlled Cascaded Strong PUF seems good, the BER is at 16.13 reducing the 
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(a) (b) 

Figure 8.4: Controlled Cascaded Strong PUF (a) Normalized intra and inter-HD and (b) 
Machine learning modelling attack immunity 

reliability. While the Voltage array PUF has the high FoM and got better BER. 

Table 8.1: Comparison with proposed strong PUF architectures 

Voltage 

Array PUF 

Cascaded 

Strong PUF 

Controlled 

Strong PUF 

Technology (nm) 65 65 65 

Possible CRPs 1.15 × 1018 1.15 × 1018 1.15 × 1018 

ML prediction error (104 CRPs) 49% 40% 47% 

Worst-case BER 10.9% 14.75% 16.13% 

Energy/bit (pJ/bit) 0.3 0.43 0.432 

Voltage range (V) 0.8-1 0.75-0.9 0.75-0.9 

Temperature range (XC) 0-to-50 −20-to-85 −20-to-85 
Inter-HD 0.5026 0.5051 0.4955 

Intra-HD 0.0466 0.0693 0.0332 

FoM 0.61 1.07 0.92 
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Conclusion 

The dependence on electronic devices has proliferated in almost everyday activities making 

them easy targets and threatening the security and privacy of an individual or a group. 

The traditional practice of using a secret binary key stored in non-volatile memory (NVM) 

for authentication is less secure against hardware or software based attacks. In contrast 

to NVMs, a physical unclonable function (PUF) does not store a physical key but rather 

derives its unique signature from random variations. This provides a promising advantage 

over traditional method of providing security to low power devices. A subthreshold voltage-

divider array based strong PUF is proposed in this work. Voltage output of the proposed 

PUF has a strong nonlinear dependence on threshold voltage which results in robustness 

against ML based modeling attacks. A 65nm prototype consumes only 0.3pJ/bit and has 

prediction accuracy of 51% with three different ML algorithms. The ratio between Inter 

to Intra HD being 10.8 shows good reliability of PUF against voltage and temperature 

fluctuations. Design variants such as cascaded PUF and controlled cascaded PUFs were also 

proposed to increase the non-linearity at the expense of reliability. Though the alternate 

design architectures provided good ML-modelling attack resistance (60% and 53%), they 

provided worse BER (14.75% and 16.13%). Future work can be explored more on Controlled 

- Cascaded PUF architecture to make it more reliable and thus developing a highly secure 

authentication hardware device operating in very low power 
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